Objective
The goal of the PlaCMOS project is to develop and demonstrate the next generation optical-electronic CMOS platform that will enable transceivers capable of real-time communication with data rates exceeding 200 Gb/s. To achieve this goal the PlaCMOS platform will be based on the latest bipolar CMOS (BiCMOS) technology and will be cointegrated with a ferroelectric plasmonic and SiGe detector technology. By exploiting plasmonics rather than photonics PlaCMOS will not only be able to extend the bandwidth far beyond 100 GHz but also reduce the footprint of the photonics device to the micrometer scale. To demonstrate the technology, a single channel 200 Gb/s non-return-to-zero (NRZ) transmitter and receiver pair will be implemented. To further show the scalability an ultra-compact 4 x 50 Gb/s transceiver directly interfacing a multicore optical fiber will be implemented and tested for temperature stability beyond 150 degree Celsius. And while the project goes far beyond the current state-of-the art, the approach is not speculative but is substantiated by recent experiments performed by the members of the consortium that indicate that both electronic and photonic limits can be stretched beyond the current limits. To this end a team with complementary skill sets from both industry and universities – all with outstanding track records in the field – have committed to address the needs outlined in current roadmaps for data communication. This project will demonstrate the capabilities of the technology for a single exemplary field of applications. Yet, the project has far wider implications with applications that go beyond the field of communications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks optical networks
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20692 YOKNEAM
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.