Ziel
In Industrial Units, electrical motors are the heart of every activity. The global electric motor market is expected to reach a value of 113.280€ million by 2019. Considering maintenance and operational schedule, predictive tools are a critical asset rather than reactive or preventive maintenance to avoid serious losses or safety problems. If a motor suddenly stops, the industrial factory manager must decide if the motor should be replaced or rewound. This brings huge losses to the company especially if the motor is critical, creating heavily downtime losses.
On the other side, electric motors are responsible for approximately 40% of the total electrical energy generated worldwide, and represent the most important component in the industry energy consumption and 75% of global CO2 industrial emissions. As typically electric motors operate at poor efficiency, there is a great potential to improve energy efficiency in this sector.
MCM allows to continuously monitoring electric motors, even the ones that are submerged in liquids, decreasing the downtime and operating costs in industrial facilities, increasing this way productivity and equipment’s lifetime. Additionality it brings safety benefits since a catastrophic motor failure can result in serious security hazards. MCM enables an accurate prediction of malfunctions in electric motors and improvement their efficient operation. This allows for a reduction of approximately 70% of the repairing costs and 85% of the equipment’s downtime and the efficiency levels can be increased by 15%, resulting in an additional reduction of the operating costs. The gains achieved through the electric motors continuous monitoring and the consequent optimization measure, have also an important role in the reduction of the high energy consumption in the industry sector.
Therefore the key bywords are reliability and efficiency. Imagine that a machine could warn you about a possible malfunction and poor efficiency: MCM is the solution.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- natural sciencescomputer and information sciencessoftware
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
Programm/Programme
- H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy Main Programme
- H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-SMEINST-1-2016-2017
Finanzierungsplan
SME-1 - SME instrument phase 1Koordinator
3400-060 OLIVEIRA HOSPITAL
Portugal
Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).