Objective
A new cooperative regime of matter-light interactions opened up recently in research of advanced optical technologies. Optical response of strongly interacting dipolar emitters is important in systems ranging from naturally occurring photosynthesis complexes and dye molecule aggregates, to metamaterials in new solar cell and atomic clock designs. Cooperative regime offers potential for strong, collectively enhanced single-photon coupling and nonlinearities, promising new platforms for optical control at a single photon level, precision measurements and quantum simulations. However there is yet no existing methodology for understanding optical response of this complex, many-body systems.
Recent progress in control of cold atom ensembles on length scales shorter than the wavelength of the field mediating interaction promises new simple and controllable platform to explore cooperative regime. This action will use unique combination of two complementary cold atom experiments in this regime. The first one achieves small, dense atomic samples; the second provides direct control and measurement of positions and states of individual atoms, together with real-time control of their external and internal degrees of freedom.
The applicant will extend this two experiments to explore new control schemes and access new observables. These will be used in benchmarking of knowledge about the cooperative regime, guiding development of new theoretical methods. Applicant’s combination of experimental and theoretical experience in analysis of complex atom-light interactions will be used for high performance computing numerical simulations. During secondment this will be distilled into effective models relaying on new theoretical methodology. Through combined theoretical and experimental work, the applicant will develop and enhance independence and skills required for design and analysis of complex quantum optics experiments with atomic systems that require advanced theoretical insight.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics
- natural sciences physical sciences quantum physics quantum optics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
- natural sciences biological sciences botany
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91120 Palaiseau
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.