European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Molecular machines based on coiled-coil protein origami

Objectif

Proteins are the most versatile and complex smart nanomaterials, forming molecular machines and performing numerous functions from structure building, recognition, catalysis to locomotion. Nature however explored only a tiny fraction of possible protein sequences and structures. Design of proteins with new, in nature unseen shapes and features, offers high rewards for medicine, technology and science. In 2013 my group pioneered the design of a new type of modular coiled-coil protein origami (CCPO) folds. This type of de novo designed proteins are defined by the sequence of coiled-coil (CC) dimer-forming modules that are concatenated by flexible linkers into a single polypeptide chain that self-assembles into a polyhedral cage based on pairwise CC interactions. This is in contrast to naturally evolved proteins where their fold is defined by a compact hydrophobic core. We recently demonstrated the robustness of this strategy by the largest de novo designed single chain protein, construction of tetrahedral, pyramid, trigonal prism and bipyramid cages that self-assemble in vivo.
This proposal builds on unique advantages of CCPOs and represents a new frontier of this branch of protein design science. I propose to introduce functional domains into selected positions of CCPO cages, implement new types of building modules that will enable regulated CCPO assembly and disassembly, test new strategies of caging and release of cargo molecules for targeted delivery, design knotted and crosslinked protein cages and introduce toehold displacement for the regulated structural rearrangement of CCPOs required for designed molecular machines, which will be demonstrated on protein nanotweezers. Technology for the positional combinatorial library-based single pot assembly of CCPO genes will provide high throughput of CCPO variants. Project will result in new methodology, understanding of potentials of CCPOs for designed molecular machines and in demonstration of different applications.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

KEMIJSKI INSTITUT
Contribution nette de l'UE
€ 2 362 838,75
Adresse
HAJDRIHOVA 19
1000 Ljubljana
Slovénie

Voir sur la carte

Région
Slovenija Zahodna Slovenija Osrednjeslovenska
Type d’activité
Research Organisations
Liens
Coût total
€ 2 362 838,75

Bénéficiaires (2)