Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Going Deep and Blind with Internal Statistics

Objectif

Unsupervised visual inference can often be performed by exploiting the internal redundancy inside a single visual datum (an image or a video). The strong repetition of patches inside a single image/video provides a powerful data-specific prior for solving a variety of vision tasks in a “blind” manner: (i) Blind in the sense that sophisticated unsupervised inferences can be made with no prior examples or training; (ii) Blind in the sense that complex ill-posed Inverse-Problems can be solved, even when the forward degradation is unknown.

While the above fully unsupervised approach achieved impressive results, it relies on internal data alone, hence cannot enjoy the “wisdom of the crowd” which Deep-Learning (DL) so wisely extracts from external collections of images, yielding state-of-the-art (SOTA) results. Nevertheless, DL requires huge amounts of training data, which restricts its applicability. Moreover, some internal image-specific information, which is clearly visible, remains unexploited by today's DL methods. One such example is shown in Fig.1.

We propose to combine the power of these two complementary approaches – unsupervised Internal Data Recurrence, with Deep Learning, to obtain the best of both worlds. If successful, this will have several important outcomes including:
• A wide range of low-level & high-level inferences (image & video).
• A continuum between Internal & External training – a platform to explore theoretical and practical tradeoffs between amount of available training data and optimal Internal-vs-External training.
• Enable totally unsupervised DL when no training data are available.
• Enable supervised DL with modest amounts of training data.
• New applications, disciplines and domains, which are enabled by the unified approach.
• A platform for substantial progress in video analysis (which has been lagging behind so far due to the strong reliance on exhaustive supervised training data).

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2017-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 466 940,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 466 940,00

Bénéficiaires (1)

Mon livret 0 0