Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Going Deep and Blind with Internal Statistics

Cel

Unsupervised visual inference can often be performed by exploiting the internal redundancy inside a single visual datum (an image or a video). The strong repetition of patches inside a single image/video provides a powerful data-specific prior for solving a variety of vision tasks in a “blind” manner: (i) Blind in the sense that sophisticated unsupervised inferences can be made with no prior examples or training; (ii) Blind in the sense that complex ill-posed Inverse-Problems can be solved, even when the forward degradation is unknown.

While the above fully unsupervised approach achieved impressive results, it relies on internal data alone, hence cannot enjoy the “wisdom of the crowd” which Deep-Learning (DL) so wisely extracts from external collections of images, yielding state-of-the-art (SOTA) results. Nevertheless, DL requires huge amounts of training data, which restricts its applicability. Moreover, some internal image-specific information, which is clearly visible, remains unexploited by today's DL methods. One such example is shown in Fig.1.

We propose to combine the power of these two complementary approaches – unsupervised Internal Data Recurrence, with Deep Learning, to obtain the best of both worlds. If successful, this will have several important outcomes including:
• A wide range of low-level & high-level inferences (image & video).
• A continuum between Internal & External training – a platform to explore theoretical and practical tradeoffs between amount of available training data and optimal Internal-vs-External training.
• Enable totally unsupervised DL when no training data are available.
• Enable supervised DL with modest amounts of training data.
• New applications, disciplines and domains, which are enabled by the unified approach.
• A platform for substantial progress in video analysis (which has been lagging behind so far due to the strong reliance on exhaustive supervised training data).

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-ADG - Advanced Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2017-ADG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

WEIZMANN INSTITUTE OF SCIENCE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 2 466 940,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 2 466 940,00

Beneficjenci (1)

Moja broszura 0 0