Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Filter Integrated single-Photon Sources

Ziel

The FIPS proof-of-concept project aims at building a prototype of an ultra-small optical filter which can be integrated into a semiconductor chip. Spectral filtering is very important for both classical and quantum photonic technology. It has applications in many fields of engineering and science such as telecommunications and spectroscopy. Conventional methods to filter light, such as prisms and gratings, require a very large dispersion length (centimeters to meters) to achieve high wavelength resolution. Therefore, reducing the size of spectrometers to enable applications in the wearable and disposable market, requires a different technological approach to light filtering.

The filter that we will develop within FIPS is based on sub-wavelength nano-cavities which provide sub-nm wavelength resolutions in the near infrared and can be integrated in compact photonic circuits. Additionally, we will integrate our filters with micro-electro-mechanical systems (MEMS) to actively tune our filters over a broad wavelength range. This approach provides a novel solution that could be further combined with detectors for spectroscopy applications.

The goal of the project is to fabricate an integrated filter in gallium arsenide membranes using state-of-the-art nanofabrication techniques and characterize it in our optical labs by performing spectral analysis of an input signal. Moreover, together with industry collaborators, we will explore the potential commercial applications of our technology towards new products that could compete in performance and specification with most of the existing integrated optical filters, in particular in the field of optical interrogation.

Gastgebende Einrichtung

KOBENHAVNS UNIVERSITET
Netto-EU-Beitrag
€ 150 000,00
Adresse
NORREGADE 10
1165 Kobenhavn
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Byen København
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 150 000,00

Begünstigte (1)