Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Magnetite surface properties in the various conditions of power plant water steam cycle

Objetivo

Owing to availability losses and the tremendous associated costs, improvement of the understanding of deposition mechanisms in boiler tubes is defined as a high priority in power industry. The electrostatic interaction between the suspended colloidal particles of corrosion products and the metal wall surface is the crucial factor that determines the deposition process and influences their deposition rate. The proposed project suggests a new approach to reduce the deposition by altering the surface characteristics of the suspended particles, potentially forming deposits, increasing the electrostatic repulsion between the particles and the inner boiler tube wall. Magnetite is a most profuse deposit compound.The main objective of the proposed project is to determine the effect of octadecylamine, oleylamine, oleyl propylenediamine, acetate, formate, glycolate, propionate, and aluminium on magnetite surface charge, zeta potential and the deposition rate at high temperatures. The surface charge and zeta potential are the key parameters that control colloidal stability of particles and their deposition on the boiler tube walls. Experiments will be carried out under different operating conditions (T,P, water chemistries) which simulate the plant water steam cycle conditions. The zeta potential measurements will be performed in the range of 25 to 80 oC employing the electrophoresis technique, the surface charge between 25 and 290 oC using the acid-base potentiometric titration and the deposition rate measurements between 25 and 150 oC using QCM-D. The parameters describing the magnetite surface in various conditions will be obtained. The research will result in the establishment of relations between the solution composition and the chemistry of the colloidal particles over a broad range of temperatures. The obtained results will serve as a basis for the development of tools to reduce the boiler tube failures and enhance the reliability and performance of the power plants.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

TECHNISCHE UNIVERSITEIT DELFT
Aportación neta de la UEn
€ 165 598,80
Dirección
STEVINWEG 1
2628 CN Delft
Países Bajos

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 165 598,80