Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

A novel immunotherapy against brain metastasis: Anti-Galectin-3

Objective

The development of new cancer treatments has significantly improved life expectancy of patients. However, these advances increase the risk of suffering from secondary tumours (metastases). Particularly, breast cancer brain metastases are a major cause of morbidity, with meagre life expectancy (3-18 months). These facts highlight the urgent need to find better treatment against this disease.
Immunotherapy has recently gained great momentum in the clinic to treat different type of cancers. However, its therapeutic use for metastatic spread to the central nervous system (CNS) remains scarce. The immune response within the CNS during metastasis progression greatly depends on microglial cells (resident CNS macrophages). Their roles in neuroinflammatory and neurodegenerative processes have been intensely investigated, whereas their function in metastasis has received minor attention. During brain metastasis, microglia show impaired immune defence, secreting a variety of anti-inflammatory cytokines (e.g. IL-10 and TGF-B) and growth factors which may contribute to metastasis progression.
A key molecule which might alter such adverse behaviour is beta-galactoside-specific animal lectin galectin-3 (Gal-3). Studies of this promiscuous protein has shown a pivotal role during tumour progression and metastasis to non-CNS sites. Importantly, recent studies from Prof Venero’s group have shown how inhibition of microglial Gal-3 shifted the phenotype of these cells into a more pro-inflammatory state. Therefore, since pro-inflammatory state in microglial cells has been described to exert anti-metastatic effects, Gal-3 inhibition may provide a powerful and novel brain metastasis immunotherapeutic approach. Moreover, the fact of the existence of Gal-3 drugs in current clinical trials enhance the possibility of using this strategy as neo-adjuvant therapy to treat breast cancer patients at risk of brain metastasis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

UNIVERSIDAD DE SEVILLA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 170 121,60
Address
CALLE S. FERNANDO 4
41004 Sevilla
Spain

See on map

Region
Sur Andalucía Sevilla
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 170 121,60
My booklet 0 0