Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Disordered and strongly-correlated systems: a new theoretical approach

Obiettivo

A primary tool to understand the properties of matter is Density Functional Theory (DFT), a reformulation of the many-electron Schroedinger equation based on a functional of the electronic density (rather than the wave-function). Although such formulation is in principle exact, its practical implementation has to rely on approximations, which, despite being successful in explaining many properties of complex molecules and condensed matter, fail when correlation among electrons becomes important.
In recent years, the hosting group has developed a formalism to deal with strong correlation in density functional theory, based on the exact DFT limit of infinite coupling strength. The formalism has also been extended to bosonic systems with different kind of long-ranged repulsive interactions with very promising proof of principle results. The underlying fixed point equations that need to be solved are non-standard and very little work on the numerical side (with the exception of primitive proof of principle implementations) has been done so far.
The researcher in this project is an applied mathematician with outstanding track record in designing numerical algorithms for several different physical problems. In particular, he has developed a new method to solve the non-linear Schroedinger one-particle equations, called spectral renormalization method, which is the perfect tool to solve the fixed point problem related to the strong-coupling limit of DFT.
In this project we will put together the expertise of the researcher and of the host to bring to full maturity the new theoretical framework of DFT for strongly-correlated systems. In particular, we plan to apply the new methodology to study systems with disorder, analyzing Anderson localization in the presence of strong correlation.

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2017

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

STICHTING VU
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 177 598,80
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 177 598,80
Il mio fascicolo 0 0