Skip to main content

3D Printed Vascular Model-on-Chip Platform with Automated Customization


Cardiovascular diseases cause over 14 million deaths worldwide each year, particularly in the form of heart attacks and strokes. Such diseases have been commonly studied by employing in vitro and in vivo models which are not able to completely recapitulate the human physiology/disease, therefore undermining the search for efficient new treatments. High resolution 3D printing has the potential to revolutionize the study of cardiovascular diseases by means of organ-on-chip approaches. Unlike conventional 2D wafer-based microfabrication techniques, 3D printing can generate truly 3D, organically shaped, highly accurate microfluidic replicas of blood vessels. These replicas can further be lined with cells and perfused with blood, disease-like events can be studied in detail, and therapeutic molecules can be tested. In this project, the potential of such methodology will be explored by developing a software tool that enables automated application-specific customization of the on-chip study platform and by utilizing more complex and biologically relevant materials in the devices' fabrication. The added value of the devices will be further testified by comparison with well-established protocols/methods in the study of angiogenesis, namely in high throughput screening settings. Finally, the commercial viability of such approach will also be assessed, and translation to market will be pursued.

Invito a presentare proposte

Vedi altri progetti per questo bando


Rua Alfredo Allen 455/461
4200-135 Porto
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Contributo UE
€ 148 635,60