Obiettivo
The robotics industry is in the process of greater adoption of machine learning. Recent reinforcement learning (RL) and AI breakthroughs, such as AlphaGo, rely on collecting large amounts of data. Such methods are unsuitable for real robots which often can only afford a few trials. Moreover, some states are unsafe to explore, e.g. running over a cliff. Conversely, works such as PILCO combine Bayesian models with model-based RL to improve data efficiency. Those frameworks typically thrive in small data regimes. The goal of this project is to develop RL algorithms that scale to high dimensions while learning with less data. The main pillars of our methodology are RL, recurrent networks, Bayesian methods, embodied exploration, and optimization. To tackle the data efficiency, we adopt model-based RL approaches. We plan to combine representation learning and dynamics in a single model, leading to high predictive power and low-dimensional internal state spaces. Notably, we use methods that can learn disentangled representations, e.g. infoGAN. In practical robots, effective exploration is a real problem in current approaches. We want to leverage recent works in embodied exploration by the host group which allows various real-world robots to explore their capabilities in minutes of interaction. I received my Ph.D. for work in optimization with Dr. William Hager. I also conducted postdoctoral research in machine learning. The Autonomous Learning group is led by Dr. Georg Martius, who has previously studied artificial intrinsic motivation, the self-organized exploration of sensorimotor coordination via information theory, and internal model learning. He also developed the robotics environment LPZRobots. I will gain extensive experience in practical robotics, embodied exploration, and information theory through the collaboration and mature as an advanced AI researcher. Both Dr. Martius and I have a track record of publishing code online. We will continue this effort.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico apprendimento per rinforzo
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica robotica
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF-EF-ST - Standard EF
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2017
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
80539 MUNCHEN
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.