Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Folding Pathways of DNA G-quadruplexes in Crowding Conditions, and Implications for Mass Spectrometry-based Ligand Screening Assays

Objective

Nucleic acids come in many forms aside from the Watson-Crick duplex. For example, guanine-rich DNA strands can form G-quadruplex structures, which have become attractive targets for small molecule ligands. It is now proven that G-quadruplexes can form in cells. Today most biophysical and structural studies on G-quadruplex folding are carried out in dilute aqueous solutions, but recent works suggest that the folding of some G-quadruplexes may differ in a crowded environment such as the cell environment. In the same way, most in vitro ligand binding assays are today carried out in dilute aqueous solutions. The aim of the project is to assess whether and how the folding pathways of G-quadruplexes differs in dilute and crowded conditions, and whether the community should revise the experimental design of ligand screening assays. We will focus on mass spectrometry-based assays, which have the unique advantage to give a direct read-out of ligand binding stoichiometry, quantity, and the variety of structural ensembles hiding behind the free and bound nucleic acid. The research program involves (1) developing mass spectrometry in more “native” conditions in the sense that we will add co-solutes to mimic cellular crowding, (2) comparing the G-quadruplex folding pathways in dilute and crowded conditions, by combining for the first time mass spectrometry, nuclear magnetic resonance, and single-molecule FRET (Förster resonance energy transfer), and (3) evaluating the impact of crowding on both traditional melting assays and mass spectrometry-based ligand screening assays. Our project will contribute to unveil fundamental principles of nucleic acid folding. It will also foster collaboration between three European institutes specialized in complementary biophysical and structural approaches to study G-quadruplexes. Finally, our project will also contribute to society by improving analytical approaches that are highly relevant to pharmacology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 076,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 173 076,00
My booklet 0 0