Objective
The 2nd generation high temperature superconductor (2G HTS) machine has a significant advantage in high power density, enabling it to play a revolutionary role in electrical aircraft propulsion. However, existing research on 2G HTS machines reveals a major technique hurdle: the thermal stability of 2G HTS coils is too low for use in aviation. Being easily subject to damage during a quench or thermal fluctuation is unacceptable. The development of new technologies is a must to improve the thermal stability and reliability of HTS windings in electrical machines. A new winding technique, no-insulation (NI) coil, has been developed recently to improve the thermal stability of HTS coils in a high field magnet. The main idea is to remove the turn-to-turn electrical insulation. During a quench, the transport current can “bypass” the local normal region through its metallic turn-to-turn contact, significantly reducing the heat generated in the HTS. Therefore, NI coils are self-protecting compared to their insulated counterparts.
This project will apply the NI technique to the HTS rotor windings of HTS synchronous machines, to significantly improve the thermal stability and reliability of the machine. This requires a clear understanding of the performance of NI HTS rotor windings in machine environments, which have not been studied yet. This project will substantially advance HTS machine technology by: 1) providing validated numerical tools to analyse the electromagnetic and thermal responses of NI coils in HTS machines; 2) proposing design strategies for using NI coils to improve stability and controllability. The novelty and originality of the project lies in the novel numerical methods for the NI coils and knowledge of the new characteristics of HTS machines with NI coils. This project will deliver a thorough understanding for the next generation of thermally reliable HTS machines with NI technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
G1 1XQ Glasgow
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.