Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

3D bioprinting of pancreatic tissue for biomedical research

Objective

Developing therapies for pancreatic diseases, such as diabetes and pancreatic cancer, is hampered by a limited access to pancreatic tissue in vivo. Engineering three-dimensional (3D) tissue models, which accurately mimic the native organ, have great potential in biomedical applications, by both providing powerful platforms for studying tissue development and homeostasis and for modeling diseases in pharmaceutical testing. Our research proposal establishes a multi-disciplinary European consortium with the ambitious goal of developing an innovative bioprinting approach for generating pancreatic tissue. Tissues and organs comprise multiple cell types with specific biological functions that must be recapitulated in the printed tissue. We will biomimic developmental processes to fabricate 3D bioprinted pancreatic tissue units that allow sustained cell viability, expansion and functional differentiation ex vivo. Specifically, the aim of this proposal is three-fold: 1. To expand and unify the knowledge of 3D in vivo architecture of the developing pancreas; 2. To develop bioprinting technology for engineering vascularized pancreatic tissue units; and 3. To establish conditions for in vitro differentiation and maturation of the bioprinted pancreatic tissue.
This exploratory research in the emerging technological field of bioprinting will pave the way towards new technological possibilities of growing functional tissues and organs in a laboratory. We expect that the knowledge and paradigms generated by our research project will not only drive major technological advances in tissue-engineering and bioprinting, but will also open radically new possibilities in medicine, allowing to study pancreatic diseases ex vivo in fabricated tissue, to develop new drugs, and, possibly to facilitate the replacement of injured or diseased tissue.

Call for proposal

H2020-FETOPEN-2016-2017

See other projects for this call

Sub call

H2020-FETOPEN-1-2016-2017

Coordinator

KING'S COLLEGE LONDON
Net EU contribution
€ 788 865,00
Address
STRAND
WC2R 2LS London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 788 865,00

Participants (5)