Objective
Poor knowledge of the spatio-temporal changes in the characteristics and distribution of subsurface fluids remains an insurmountable barrier to addressing important societal issues, including: sustainable management of energy resources (e.g. hydrocarbons and geothermal energy), management of water resources, and assessment of hazard (e.g. volcanic eruptions). Gravimetry is highly attractive because it can detect changes in subsurface mass, thus providing a window into processes that involve deep fluids. However, high cost and operating features associated with current instrumentation seriously limits the practical field use of gravimetry.
NEWTON-g proposes a radical change of paradigm for gravimetry to overcome such limitations. We aim at developing a field-compatible gravity imager able to real-time monitor the evolution of the subsurface mass changes through continuous images of the gravity field. This system will include an array of low-costs MEMS-based relative gravimeters anchored on an absolute quantum gravimeter. The adjustable position, grid and shape of the array of sensors and the continuous logging of the gravimeters will provide imaging of gravity changes, associated with variations in subsurface fluid properties, with unparalleled spatio-temporal resolution.
Specific work will be carried out to ruggedize the devices for field operation. We will deploy the new gravity imager at Etna volcano (Italy), where frequent gravity fluctuations, easy access to the active structures and the presence of a multiparameter monitoring system (including traditional gravimeters) ensure an excellent natural laboratory for testing the new tools. Insights from the new gravity imager will be used for volcanic hazards analysis, to demonstrate the importance of gravity to problems of societal relevance. A successful implementation of NEWTON-g will open new doors for geophysical exploration and will shift the locus of gravimeter manufacture from North America to Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences hydrology
- natural sciences chemical sciences organic chemistry hydrocarbons
- natural sciences earth and related environmental sciences geology volcanology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology environmental engineering energy and fuels renewable energy geothermal energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00143 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.