Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Ultra-versatile Structural PRINTing of amorphous and tuned crystalline matter on multiple substrates

Objectif

Thin film deposition methods are crucial to generate progress in Key Enabling Technologies (KETs) of strategic importance for Europe, including Advanced Materials, Nanotechnology, Micro- and Nanoelectronics, Biotechnology, and Photonics. Devices like photovoltaic cells, light emitting diodes, electronic and optoelectronic micro-/nano-sensors are prominent examples of thin film applications where the precise control of material deposition and its degree of order (crystallinity) are of paramount importance for their performance and function. However, technologies for thin film deposition have very limited capacity to tune the material crystallinity at room temperature and atmospheric pressure, or to create functional 3D architectures in a single and versatile manner. The requirement of high temperatures and vacuum conditions make them inherently costly and unsuitable for deposition on various substrates (e.g. plastics). Moreover, their dimensions are not compatible with miniaturization and integration in table-top interfaces that would broaden their potential use. These limitations restrain the development of ground-breaking functional materials and new-conceptual devices. The absence of a radically new deposition technology hampers innovation and the appearance of new and cost-effective marketable products. Therefore, it is of utmost importance to develop a radically new deposition technology to overcome these limitations, and that is at the core of the SPRINT project. SPRINT will develop a universal deposition technology of amorphous and tuned crystalline matter on multiple substrates, at room temperature and pressure. This technology not only combines the benefits of existing advanced deposition methods, at significantly lower cost and higher deposition rates, but also goes beyond the state-of-the-art in advanced materials development, to open new roadmaps to a plethora of future devices and applications.

Appel à propositions

H2020-FETOPEN-2016-2017

Voir d’autres projets de cet appel

Sous appel

H2020-FETOPEN-1-2016-2017

Coordinateur

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 385 955,00
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 470 151,25

Participants (10)