Description du projet
Un nouvel éclairage sur une ancienne symbiose microbienne
Les palourdes lucinides et leurs bactéries symbiotiques, que l’on peut trouver dans des habitats marins peu profonds dans le monde entier, sont passées au microscope. Il existe des centaines d’espèces lucinides, et presque chacune d’entre elles héberge ses propres microbes symbiotiques spécifiques. De fait, la capacité de la palourde à sélectionner un symbiote spécifique parmi les milliers de milliards de bactéries de son environnement remet en question les hypothèses actuelles sur la fonction et la spécificité du système immunitaire inné. Le projet EvoLucin, financé par l’UE, étudiera l’association entre les palourdes marines lucinides et les bactéries symbiotiques chimiosynthétiques. Il étudiera trois aspects clés des interactions hôte-microbe des palourdes: l’acquisition et la sélection de microbes au cours du développement animal; l’entretien tout au long de la vie des animaux grâce à la communication et à l’échange moléculaires; ainsi que l’émergence et la perpétuation de l’évolution.
Objectif
The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.
Champ scientifique
- natural sciencesbiological sciencesmicrobiologybacteriology
- humanitieshistory and archaeologyhistory
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- medical and health sciencesbasic medicineimmunology
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
Mots‑clés
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
1010 Wien
Autriche