Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

400 Million Years of Symbiosis: Host-microbe interactions in marine lucinid clams from past to present

Description du projet

Un nouvel éclairage sur une ancienne symbiose microbienne

Les palourdes lucinides et leurs bactéries symbiotiques, que l’on peut trouver dans des habitats marins peu profonds dans le monde entier, sont passées au microscope. Il existe des centaines d’espèces lucinides, et presque chacune d’entre elles héberge ses propres microbes symbiotiques spécifiques. De fait, la capacité de la palourde à sélectionner un symbiote spécifique parmi les milliers de milliards de bactéries de son environnement remet en question les hypothèses actuelles sur la fonction et la spécificité du système immunitaire inné. Le projet EvoLucin, financé par l’UE, étudiera l’association entre les palourdes marines lucinides et les bactéries symbiotiques chimiosynthétiques. Il étudiera trois aspects clés des interactions hôte-microbe des palourdes: l’acquisition et la sélection de microbes au cours du développement animal; l’entretien tout au long de la vie des animaux grâce à la communication et à l’échange moléculaires; ainsi que l’émergence et la perpétuation de l’évolution.

Objectif

The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.

Mots‑clés

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITAT WIEN
Contribution nette de l'UE
€ 1 499 561,00
Adresse
UNIVERSITATSRING 1
1010 Wien
Autriche

Voir sur la carte

Région
Ostösterreich Wien Wien
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 499 561,00

Bénéficiaires (1)