Descripción del proyecto
Nuevos datos sobre la simbiosis microbiana en la antigüedad
Las almejas de la familia Lucinidae, presentes en todo el mundo en hábitats marinos poco profundos, y sus bacterias simbióticas están captando gran atención. Existen cientos de especies de la familia Lucinidae y prácticamente cada una de ellas alberga sus propios microbios simbióticos específicos. De hecho, la capacidad de la almeja de seleccionar un simbionte determinado entre los billones de bacterias de su entorno es contraria a las asunciones actuales sobre la función y especificidad del sistema inmunológico congénito. El proyecto EvoLucin, financiado con fondos europeos, investigará la relación entre estas almejas marinas y las bacterias simbióticas quimiosintéticas. Estudiará tres aspectos clave de las interacciones microbios-huésped de la almeja: la adquisición y selección de microbios durante el desarrollo animal; el mantenimiento durante la vida de los animales mediante el intercambio y la comunicación molecular, y la emergencia y perpetuación durante la evolución.
Objetivo
The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.
Ámbito científico
- natural sciencesbiological sciencesmicrobiologybacteriology
- humanitieshistory and archaeologyhistory
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- medical and health sciencesbasic medicineimmunology
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
1010 Wien
Austria