Projektbeschreibung
Mikrobielle Symbiose der Urzeit neu betrachtet
Mondmuscheln, die weltweit in flachen Meereslebensräumen zu finden sind, werden nun gemeinsam mit ihren symbiotischen Bakterien erforscht. Es gibt hunderte Arten der Lucinidae und fast jede hat ihre eigenen spezifischen symbiotischen Bakterien. Die Fähigkeit dieser Muscheln, aus den Billionen Bakterien in ihrer Umwelt den einen spezifischen Symbionten zu finden, stellt eigentlich sogar all unsere Annahmen über die Funktionsweise und Spezifizität des angeborenen Immunsystems in Frage. Im EU-finanzierten Projekt EvoLucin wird nun die Verbindung zwischen den marinen Mondmuscheln und chemosynthetischen symbiotischen Bakterien erforscht. Drei Hauptaspekte der Wechselwirkungen zwischen Wirtsmuschel und Mikrobe werden untersucht: Finden und Auswahl von Mikroben im Laufe der Entwicklung des Tieres; Aufrechterhaltung der Beziehung durch molekulare Kommunikation und molekularen Austausch über Lebenszeiten einzelner Tiere hinweg; und Auftreten und Weiterführung in der Evolution.
Ziel
The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.
Wissenschaftliches Gebiet
- natural sciencesbiological sciencesmicrobiologybacteriology
- humanitieshistory and archaeologyhistory
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- medical and health sciencesbasic medicineimmunology
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-STG - Starting GrantGastgebende Einrichtung
1010 Wien
Österreich