Descrizione del progetto
Fare nuova luce su un’antica simbiosi microbica
Presenti in tutto il mondo in habitat marini superficiali, le vongole lucinidi e i loro batteri simbiotici sono stati esaminati con attenzione. Esistono centinaia di specie di lucinidi e quasi tutte ospitano i propri specifici microbi simbiotici. In realtà, l’abilità della vongola nel selezionare un simbionte specifico dai trilioni di batteri nel suo ambiente sfida i presupposti attuali circa la funzione e specificità del sistema immunitario innato. Il progetto EvoLucin, finanziato dall’UE, approfondirà l’associazione tra le vongole lucinidi marine e i batteri simbiotici chemiosintetici. Studierà tre aspetti centrali delle interazioni ospite-microbi della vongola: l’acquisizione e la selezione di microbi durante lo sviluppo animale; il mantenimento durante i cicli vitali animali tramite la comunicazione e lo scambio molecolare; la comparsa e la perpetuazione nell’evoluzione.
Obiettivo
The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.
Campo scientifico
- natural sciencesbiological sciencesmicrobiologybacteriology
- humanitieshistory and archaeologyhistory
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- medical and health sciencesbasic medicineimmunology
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
1010 Wien
Austria