Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing

Ziel

The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.

Schlüsselbegriffe

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Netto-EU-Beitrag
€ 1 497 375,00
Adresse
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Deutschland

Auf der Karte ansehen

Region
Baden-Württemberg Tübingen Tübingen, Landkreis
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 497 375,00

Begünstigte (1)