Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Bacterial biofilms in porous structures: from biomechanics to control

Description du projet

L’étude des interactions entre les biofilms microbiens oriente les futures applications industrielles

Les micro‑organismes ont la capacité de former des biofilms, des communautés 3D semblables à celles que l’on trouve sur la plaque dentaire. Le projet BEBOP, financé par l’UE, vise à comprendre les mécanismes biophysiques qui sous‑tendent la formation de telles structures dans des environnements complexes tels que les milieux poreux. En utilisant une combinaison de microfluidique, d’expériences sur des bioréacteurs, de fluorescence et d’imagerie par rayons X, les chercheurs étudient les processus biophysiques sous‑jacents. La dissection des interactions entre les biofilms et leur environnement fournira des connaissances fondamentales en biomécanique et en écologie physique, et ouvrira également la voie à de nouvelles biotechnologies pour des applications industrielles et sociétales, telles que le traitement des eaux usées et la bioremédiation des sols.

Objectif

The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.

The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.

The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.

The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.

We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 1 649 861,00
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 1 649 861,00

Bénéficiaires (1)