Descripción del proyecto
Descubrimiento de los mecanismos moleculares de la apertura hidrófoba
La apertura hidrófoba se produce cuando el movimiento de iones u otras moléculas a través de canales iónicos biológicos o nanoporos sintéticos se bloquea mediante la formación de burbujas a nanoescala. Se forman por la transición de fase líquida a gaseosa entre las superficies hidrófobas confinantes de la apertura. El objetivo del proyecto HyGate, financiado con fondos europeos, es descubrir los mecanismos fundamentales de la apertura hidrófoba en nanoporos modelo y canales iónicos biológicos para diseñar nanodispositivos biomiméticos. Los investigadores del proyecto utilizarán herramientas teóricas y de simulación particulares para estudiar la nucleación del vapor en confinamiento extremo. Los hallazgos y las herramientas del estudio serán fundamentales para diseñar mejores biosensores y nanodispositivos que eviten la formación de nanoburbujas o la aprovechen para conseguir propiedades de conductividad complejas.
Objetivo
Hydrophobic gating is the phenomenon by which the flux of ions or other molecules through biological ion channels or synthetic nanopores is hindered by the formation of nanoscale bubbles. Recent studies suggest that this is a generic mechanism for the inactivation of a plethora of ion channels, which are all characterized by a strongly hydrophobic interior. The conformation, compliance, and hydrophobicity of the nanochannels – in addition to external parameters such as electric potential, pressure, presence of gases – have a dramatic influence on the probability of opening and closing of the gate. This largely unexplored confined phase transition is known to cause low frequency noise in solid-state nanopores used for DNA sequencing and sensing, limiting their applicability. In biological channels, hydrophobic gating might conspire in determining the high selectivity towards a specific ions or molecules, a characteristic which is sought for in biosensors.
The objective of HyGate is to unravel the fundamental mechanisms of hydrophobic gating in model nanopores and biological ion channels and exploit their understanding in order to design biosensors with lower noise and higher selectivity. In order to achieve this ambitious goal, I will deploy the one-of-a-kind simulation and theoretical tools I developed to study vapor nucleation in extreme confinement, which comprises rare-event molecular dynamics and confined nucleation theory. These quantitative tools will be instrumental in designing better biosensors and nanodevices which avoid the formation of nanobubbles or exploit them to achieve exquisite species selectivity. The novel physical insights into the behavior of water in complex nanoconfined environments are expected to inspire radically innovative strategies for nanopore sensing and nanofluidic circuits and to promote a stepwise advancement in the fundamental understanding of hydrophobic gating mechanisms and their influence on bio-electrical cell response.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ingeniería y tecnologíaingeniería eléctrica, ingeniería electrónica, ingeniería de la informacióningeniería electrónicasensoresbiosensores
- ciencias naturalesciencias biológicasgenéticaADN
- ciencias naturalesciencias biológicasbiología celular
- ingeniería y tecnologíananotecnología
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
00185 Roma
Italia