European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Hydrophobic Gating in nanochannels: understanding single channel mechanisms for designing better nanoscale sensors

Description du projet

Découvrir les mécanismes moléculaires de la barrière hydrophobe

On parle de «barrière» hydrophobe lorsque le mouvement des ions ou d’autres molécules à travers des canaux ioniques biologiques ou des nanopores synthétiques est bloqué par la formation de bulles de taille nanométrique. Celles-ci sont formées par la transition liquide-vapeur entre les surfaces hydrophobes confinées de la barrière. Le projet HyGate, financé par l’UE, vise à découvrir les mécanismes fondamentaux de la barrière hydrophobe dans des nanopores modèles et des canaux ioniques biologiques afin de concevoir des nanodispositifs biomimétiques. Les chercheurs utiliseront des outils uniques de simulation et de théorie pour étudier la nucléation de la vapeur dans un confinement extrême. Les résultats et les outils de l’étude permettront de concevoir de meilleurs biocapteurs et nanodispositifs qui évitent la formation de nanobulles ou l’exploitent pour obtenir des propriétés de conductivité complexes.

Objectif

Hydrophobic gating is the phenomenon by which the flux of ions or other molecules through biological ion channels or synthetic nanopores is hindered by the formation of nanoscale bubbles. Recent studies suggest that this is a generic mechanism for the inactivation of a plethora of ion channels, which are all characterized by a strongly hydrophobic interior. The conformation, compliance, and hydrophobicity of the nanochannels – in addition to external parameters such as electric potential, pressure, presence of gases – have a dramatic influence on the probability of opening and closing of the gate. This largely unexplored confined phase transition is known to cause low frequency noise in solid-state nanopores used for DNA sequencing and sensing, limiting their applicability. In biological channels, hydrophobic gating might conspire in determining the high selectivity towards a specific ions or molecules, a characteristic which is sought for in biosensors.
The objective of HyGate is to unravel the fundamental mechanisms of hydrophobic gating in model nanopores and biological ion channels and exploit their understanding in order to design biosensors with lower noise and higher selectivity. In order to achieve this ambitious goal, I will deploy the one-of-a-kind simulation and theoretical tools I developed to study vapor nucleation in extreme confinement, which comprises rare-event molecular dynamics and confined nucleation theory. These quantitative tools will be instrumental in designing better biosensors and nanodevices which avoid the formation of nanobubbles or exploit them to achieve exquisite species selectivity. The novel physical insights into the behavior of water in complex nanoconfined environments are expected to inspire radically innovative strategies for nanopore sensing and nanofluidic circuits and to promote a stepwise advancement in the fundamental understanding of hydrophobic gating mechanisms and their influence on bio-electrical cell response.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Contribution nette de l'UE
€ 1 496 250,00
Adresse
Piazzale Aldo Moro 5
00185 Roma
Italie

Voir sur la carte

Région
Centro (IT) Lazio Roma
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 496 250,00

Bénéficiaires (1)