Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Simulations for Inertial Particle Microfluidics

Project description

Novel microfluidics technology for particle separation and diagnostics

Microfluidics devices process and analyse tiny amounts of liquids and have the potential to revolutionise point-of-care applications such as diagnostics. COVID-19 lateral flow tests constitute examples of such devices. Funded by the EU, the SIRIUS project focuses on the advancement of inertial particle microfluidics (IPMF), a relatively recent technology where the sample moves with high speed. IPMF can be used to separate biological particles such as cancer cells from blood. Researchers will study the principles and physical rules of IPMF to improve technology implementation in diagnosis and healthcare at reduced cost.

Objective

Cancer and bacterial infections are projected to kill 18 million people worldwide annually by 2050. Fast and reliable diagnostics are essential for early and targeted treatments. Microfluidics is at the heart of the miniaturisation of diagnostics, enabling novel portable and low-cost point-of-care devices. Inertial particle microfluidics (IPMF) is a novel and competitive method with applications in cancer cell and bacteria separation. Yet, the physics behind IPMF is not well understood, making progress slow and costly. Novel design rules are in urgent need to avoid trial-and-error experiments. I will numerically investigate the underlying physical mechanisms and develop the first predictive toolkit for engineering applications of IPMF.

In particular, I will address five ambitious challenges in SIRIUS:
1. Develop an accurate numerical model for IPMF.
2. Understand the impact of particle softness.
3. Investigate the effect of finite particle concentration.
4. Improve the currently low separation efficiency of small particles.
5. Develop a toolkit to enable simulation-driven design.

These objectives are feasible through novel numerical approaches based on the lattice-Boltzmann method and state-of-the-art high-performance computing. SIRIUS will pursue an innovative simulation campaign, validated with existing experimental data, to generate both physical insight and scaling laws for simulation-driven design.

For the first time, SIRIUS will produce robust numerical methods for IPMF. My pioneering research will uncover the physics behind particle separation and culminate in a design toolkit for IPMF engineers. SIRIUS will fill a critical gap and open up an entirely new research field: “Simulations for inertial particle microfluidics”. Results of SIRIUS will be published as open-source codes, open-access articles, and open data. This will ultimately enable faster, less costly and more innovative research in the field of microfluidics for diagnostics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

THE UNIVERSITY OF EDINBURGH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 290,00
Address
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
United Kingdom

See on map

Region
Scotland Eastern Scotland Edinburgh
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 290,00

Beneficiaries (1)

My booklet 0 0