Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Simulations for Inertial Particle Microfluidics

Projektbeschreibung

Neue Mikrofluidik-Technologie zur Partikelabscheidung und Diagnostik

Mikrofluidikvorrichtungen verarbeiten und analysieren winzige Flüssigkeitsmengen und könnten patientennahe Anwendungen wie die Diagnostik revolutionieren. Die Lateral Flow Tests für COVID-19 sind ein Beispiel solcher Vorrichtungen. Das EU-finanzierte Projekt SIRUS legt einen Schwerpunkt auf die Weiterentwicklung der Mikrofluidik mit trägen Teilchen, einer relativ neuen Technologien, bei der die Proben sich mit hoher Geschwindigkeit bewegen. Sie kann eingesetzt werden, um biologische Teilchen zu trennen, zum Beispiel Krebszellen von Blut. Die Forschenden werden die Grundsätze und physikalischen Regeln dieser Technologie erforschen, um die Technologieanwendung in der Diagnostik und Gesundheitspflege zu geringeren Kosten auszubauen.

Ziel

Cancer and bacterial infections are projected to kill 18 million people worldwide annually by 2050. Fast and reliable diagnostics are essential for early and targeted treatments. Microfluidics is at the heart of the miniaturisation of diagnostics, enabling novel portable and low-cost point-of-care devices. Inertial particle microfluidics (IPMF) is a novel and competitive method with applications in cancer cell and bacteria separation. Yet, the physics behind IPMF is not well understood, making progress slow and costly. Novel design rules are in urgent need to avoid trial-and-error experiments. I will numerically investigate the underlying physical mechanisms and develop the first predictive toolkit for engineering applications of IPMF.

In particular, I will address five ambitious challenges in SIRIUS:
1. Develop an accurate numerical model for IPMF.
2. Understand the impact of particle softness.
3. Investigate the effect of finite particle concentration.
4. Improve the currently low separation efficiency of small particles.
5. Develop a toolkit to enable simulation-driven design.

These objectives are feasible through novel numerical approaches based on the lattice-Boltzmann method and state-of-the-art high-performance computing. SIRIUS will pursue an innovative simulation campaign, validated with existing experimental data, to generate both physical insight and scaling laws for simulation-driven design.

For the first time, SIRIUS will produce robust numerical methods for IPMF. My pioneering research will uncover the physics behind particle separation and culminate in a design toolkit for IPMF engineers. SIRIUS will fill a critical gap and open up an entirely new research field: “Simulations for inertial particle microfluidics”. Results of SIRIUS will be published as open-source codes, open-access articles, and open data. This will ultimately enable faster, less costly and more innovative research in the field of microfluidics for diagnostics.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

THE UNIVERSITY OF EDINBURGH
Netto-EU-Beitrag
€ 1 499 290,00
Adresse
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Vereinigtes Königreich

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 499 290,00

Begünstigte (1)