Description du projet
Nouvelle technologie microfluidique pour la séparation des particules et les diagnostics
Les dispositifs microfluidiques traitent et analysent de minuscules quantités de liquides et sont susceptibles de révolutionner les applications sur le lieu d’intervention telles que les diagnostics. Les tests d’écoulement latéral COVID-19 constituent des exemples de tels dispositifs. Financé par l’UE, le projet SIRIUS se concentre sur l’avancement de la microfluidique à particules inertielles (IPMF), une technologie relativement récente où l’échantillon se déplace à grande vitesse. L’IPMF peut être utilisée pour séparer les particules biologiques telles que les cellules cancéreuses du sang. Les chercheurs étudieront les principes et les règles physiques de l’IPMF afin d’améliorer la mise en œuvre de la technologie dans le domaine du diagnostic et des soins de santé à un coût réduit.
Objectif
Cancer and bacterial infections are projected to kill 18 million people worldwide annually by 2050. Fast and reliable diagnostics are essential for early and targeted treatments. Microfluidics is at the heart of the miniaturisation of diagnostics, enabling novel portable and low-cost point-of-care devices. Inertial particle microfluidics (IPMF) is a novel and competitive method with applications in cancer cell and bacteria separation. Yet, the physics behind IPMF is not well understood, making progress slow and costly. Novel design rules are in urgent need to avoid trial-and-error experiments. I will numerically investigate the underlying physical mechanisms and develop the first predictive toolkit for engineering applications of IPMF.
In particular, I will address five ambitious challenges in SIRIUS:
1. Develop an accurate numerical model for IPMF.
2. Understand the impact of particle softness.
3. Investigate the effect of finite particle concentration.
4. Improve the currently low separation efficiency of small particles.
5. Develop a toolkit to enable simulation-driven design.
These objectives are feasible through novel numerical approaches based on the lattice-Boltzmann method and state-of-the-art high-performance computing. SIRIUS will pursue an innovative simulation campaign, validated with existing experimental data, to generate both physical insight and scaling laws for simulation-driven design.
For the first time, SIRIUS will produce robust numerical methods for IPMF. My pioneering research will uncover the physics behind particle separation and culminate in a design toolkit for IPMF engineers. SIRIUS will fill a critical gap and open up an entirely new research field: “Simulations for inertial particle microfluidics”. Results of SIRIUS will be published as open-source codes, open-access articles, and open data. This will ultimately enable faster, less costly and more innovative research in the field of microfluidics for diagnostics.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- sciences naturellessciences physiquesmécanique classiquemécanique des fluidesmicrofluidics
- sciences naturellesmathématiquesmathématiques appliquéesanalyse numérique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Mots‑clés
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
EH8 9YL Edinburgh
Royaume-Uni