Descripción del proyecto
Más allá de la detección fotónica cuántica mejorada de última generación
Los sensores se han vuelto indispensables en muchas aplicaciones de la vida moderna, como la vigilancia ambiental, la seguridad, la atención sanitaria, el comercio y otras. El proyecto PEQEM, financiado por el Consejo Europeo de Investigación (CEI), tiene como objetivo desarrollar la fotónica integrada mediante una metodología que combina la óptica cuántica de los materiales no lineales de Kerr con la ingeniería de dispositivos fotónicos. La tecnología de detección y generación de luz concentrada completamente integrada que se desarrollará proporcionará sensores mejorados para las mediciones de absorción y de fase, y superará el rendimiento de los sensores convencionales. Las aplicaciones de medición y detección mejorada cuántica incluyen experimentos de metrología cuántica de última generación, medición de muestras fotosensibles, caracterización precisa de componentes fotónicos y detección de oligogases.
Objetivo
Advances in measurement always lead to dramatic advances in science and in technology. Our society is now heavily dependent on the sensors that permeate environmental monitoring, security, healthcare and commerce. This is quantified by the global sensing market worth rising from $110 billion in 2015 to $124 billion in 2016, and is predicted to continue to rise to $240 billion by 2022. Now, our rapidly growing understanding of how to control quantum systems vastly expands both the potential performance and application for measurement and sensing using quantum-enhanced techniques. But these techniques will only efficiently find disruptive use once they are engineered for robustness, deliver desired operational parameters and are shown to work in a platform that can be mass-produced.
This project adopts an engineering approach to the disciplines of photonic quantum enhanced sensing and squeezed light quantum optics. We will develop integrated photonics that are tailored to enable miniature, deployable and ultimately low cost sensors that exceed the state of the art through (i) exploitation of the quantum mechanics of light and by (ii) developing the requisite high performance of components in an integrated photonics platform. The methodology is to combine quantum optics of Kerr-nonlinear materials that generate squeezed light and quantum state detection with photonic device engineering. We will benchmark device performance using quantum metrology techniques. By the end of this project, we will have developed all-integrated squeezed light generation and detection technology, that provides enhanced sensors for absorption and phase measurements beyond the shot noise limit --- the hard limit that bounds performance of state of the art classical sensors. Applications include next generation quantum metrology experiments, measurement of photo-sensitive samples, precise characterization of photonic components and trace gas detection.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ingeniería y tecnologíaingeniería eléctrica, ingeniería electrónica, ingeniería de la informacióningeniería electrónicasensores
- ciencias socialeseconomía y empresagestión y empresascomercio
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
BS8 1QU Bristol
Reino Unido