Project description
Low-cost, high-density lithium–ion battery technology for electric vehicles
The demand for electric vehicles is growing. Cost reduction, increased range and safety, and shorter charging times are key to accelerating their market acceptance. The EU-funded SPIDER project is developing a powerful, durable and safe lithium-ion battery technology. The new, low-cost battery is expected to bring energy density to 450 Wh/kg and power density to 800 W/kg by 2030. It operates at a lower and safer voltage, and uses novel, conductive and intrinsically safe liquid electrolytes. Safety concerns are further eliminated as thermal energy dissipation can be reduced to 4 kW/kg and thermal runaway temperature increased to over 200 °C. The battery technology bypasses the loss of cyclable lithium – a main lithium-ion ageing mechanism for silicon-based anodes – by using prelithiation.
Objective
Knowledge-based improvements of Li-ion battery cost, performance, recyclabiKnowledge-based improvements of Li-ion battery cost, performance, recyclability and safety are needed to enable electric vehicles to rapidly gain market share and reduce CO2 emissions. SPIDER’s advanced, low-cost (75 €/kWh by 2030) battery technology is predicted to bring energy density to ~ 450 Wh/kg by 2030 and power density to 800 W/kg. It operates at a lower, and thus safer, voltage, which enables the use of novel, highly conductive and intrinsically safe liquid electrolytes. Safety concerns will be further eliminated (or strongly reduced), as thermal energy dissipation will be reduced to 4 kW/kg, and thermal runaway temperature increased to over 200°C. Moreover, SPIDER overcomes one of the main Li-ion ageing mechanisms for silicon based anodes: notably, the loss of cyclable lithium, which should increase lifetime to 2000 cycles by 2022 for first life applications with further usefulness up to 5000 cycles in second life (stationary energy storage). In addition, SPIDER’s classic cell manufacturing process with liquid electrolyte will be readily transferable to industry, unlike solid electrolyte designs, which still require the development of complex manufacturing processes. Finally, SPIDER batteries will be designed to be 60% recyclable by weight, and a dedicated recycling process will be developed and evaluated during SPIDER. In addition, SPIDER materials significantly reduce the use of critical raw materials. Finally, four SPIDER partners are identified by the European Battery Alliance as central and strategic for the creation of the needed European battery value chain: SGL, NANO, VMI & SOLVAY. In conclusion, SPIDER proposes a real breakthrough in battery chemistry that can be readily adopted within a sustainable, circular economy by a competitive, European battery value chain to avoid foreign market dependence and to capture the emerging 250 billion € battery market in Europe.
Fields of science
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- natural scienceschemical scienceselectrochemistryelectric batteries
- social sciencessocial geographytransportelectric vehicles
- engineering and technologyenvironmental engineeringmining and mineral processing
Keywords
Programme(s)
Topic(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
75015 PARIS 15
France