Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel approaches to the generation of artificial spider silk superfibers

Project description

Spinning a better artificial spider-silk

Spider silk is a high-performance natural material, with significant potential to revolutionise the materials industry. Unfortunately, its production and further spinning into artificial spider-silk fibres is an extremely difficult task. Moreover, the current procedures for manufacturing spider silk do not allow the correct structures to form in the fibers. The EU-funded ARTSILK project will make use of recent technological discoveries and cutting-edge technologies to produce artificial spider-silk fibres that are equal to or even better than native spider silk, in both in terms of toughness and tensile strength.

Objective

Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.

The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.

To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g. Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-COG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 000 000,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 000 000,00

Beneficiaries (1)

My booklet 0 0