Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Statistical Methods For High Dimensional Diffusions

Description du projet

Moins de maux de tête avec les mégadonnées

Les mathématiciens et tous les types de scientifiques et d’ingénieurs sont de plus en plus sollicités pour analyser des données de haute dimension, où chaque nouvelle caractéristique est une autre dimension et pour lesquelles le nombre de caractéristiques peut dépasser le nombre d’observations. Pour simplifier la charge de calcul liée à l’utilisation de ces données, de nombreuses méthodes d’estimation ont été mises au point pour traiter les données discrètes (données échantillonnées à des moments précis). Cependant, ces méthodes font cruellement défaut et on en aurait grandement besoin pour traiter des données en temps continu. Le projet STAMFORD, financé par l’UE, comble cette lacune importante avec des applications dans des domaines allant de la biologie et de la physique des particules au marché boursier.

Objectif

In the past twenty years the availability of vast dimensional data, typically referred to as big data, has given rise to exciting challenges in various fields of mathematics and computer sciences. The increasing need for getting a better understanding of such data in internet traffic, biology, genetics, and economics, has lead to a revolution in statistical and machine learning, optimisation and numerical analysis. Due to high dimensionality of modern statistical models, parameter estimation is a difficult task and statisticians typically investigate estimation methods under sparsity constraints. While an abundance of estimation algorithms is now available for high dimensional discrete models, a rigorous mathematical investigation of estimation problems for high dimensional continuous-time processes is completely undeveloped.

The aim of STAMFORD is to provide a concise statistical theory for estimation of high dimensional diffusions. Such high dimensional processes naturally appear in modelling particle interactions in physics, neural networks in biology or large portfolios in economics, just to name a few. The methodological part of the project will require development of novel
advanced techniques in mathematical statistics and probability theory. In particular, new results will be needed in parametric and non-parametric statistics, and high dimensional probability, that are reaching far beyond the state-of-the-art. Hence, a successful outcome of STAMFORD will not only have a tremendous impact on statistical inference for continuous-time models in natural and applied sciences, but also strongly influence the field of high dimensional statistics and probability.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2018-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITE DU LUXEMBOURG
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 504 549,35
Adresse
2 PLACE DE L'UNIVERSITE
4365 ESCH-SUR-ALZETTE
Luxembourg

Voir sur la carte

Région
Luxembourg Luxembourg Luxembourg
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 504 549,35

Bénéficiaires (2)

Mon livret 0 0