Projektbeschreibung
Verfahren des maschinellen Lernens für die Leistungsmessung von Flugzeugen
Der aktuelle Flugbetrieb stützt sich zur Planung und Verwaltung der Flugwege auf das Flugmanagementsystem. Das Flugmanagementsystem beruht jedoch für jeden Flugzeugtyp auf einem einzigen Leistungsmodell des Herstellers und auf Wettervorhersagen von vor dem Flug. Daher mangelt es an Genauigkeit und mit dem Ansatz können keine präzisen Messungen der Flugzeugleistung erfolgen. Um dieses Problem zu lösen, zielt das EU-finanzierte Projekt PERF-AI darauf ab, Verfahren des maschinellen Lernens auf Flugdaten anzuwenden. Auf diese Weise kann die tatsächliche Leistung des Flugzeugs während seiner gesamten Lebensdauer genau gemessen werden. Im Rahmen des Projekts werden geeignete Algorithmen des maschinellen Lernens ermittelt, ihre Genauigkeit im Hinblick auf die Flugdatenanalyse bewertet und mathematische Modelle zur Optimierung von Flugbahnen im realen Flugbetrieb entwickelt.
Ziel
PERF-AI will apply Machine Learning techniques on flight data (parametric & non-parametric approaches) to accurately measure actual aircraft performance throughout its lifecycle.
Within current airline operations, both at flight preparation (on-ground) & at flight management (in-air) levels, the trajectory is first planned, then managed by the Flight Management System (FMS) using a single manufacturer’s performance model that is the same for every aircraft of the same type, & also on weather forecast that is computed long before the flight. It induces a lack of accuracy during the planning phase with a flight route pre-established at specific altitudes & speeds to optimize fuel burn, from take-off to landing using aircraft performances that are not those of the real aircraft. Also, the actual flight will usually shift from the original plan because of Air Traffic Control (ATC) constraints, adverse weather, wind changes & tactical re-routing, without possibility for the flight crew, either using the FMS or through connected services to tactically recompute the trajectory in order to continuously optimize the flight path. This is in particular due to the limitations of the performance databases that the current systems are using.
Hence, PERF-AI is focusing on identifying adequate machine learning algorithms, testing their accuracy & capability to perform flight data statistical analysis & developing mathematical models to optimize real flight trajectories with respect to the actual aircraft performance, thus, minimizing fuel consumption throughout the flight.
The consortium consists of Safety-Line (FR) & INRIA (FR), having full expertise at Aircraft Performance & Data Science, hence, able to fully propose, test & validate different statistical models that will allow to accurately solve some optimization challenges & implement them in an operational environment.
PERF-AI total grant request to the CSJU is 568 550€ with total project duration of 24 months.
Wissenschaftliches Gebiet
Not validated
Not validated
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- natural sciencesmathematicsapplied mathematicsstatistics and probability
- engineering and technologyenvironmental engineeringenergy and fuels
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
CS2-IA - Innovation actionKoordinator
75015 Paris
Frankreich
Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).