Description du projet
Améliorer le rendement de conversion de la lumière infrarouge en énergie
La lumière infrarouge représente près de la moitié de l’énergie solaire atteignant la surface de la Terre. Néanmoins, les rayons infrarouges solaires passent habituellement au travers des matériaux photovoltaïques qui composent les cellules solaires. Le projet PAIDEIA, financé par l’UE, a pour objectif d’améliorer la conversion de l’énergie solaire dans la partie infrarouge du spectre. Pour y parvenir, il aura recours à des nanocristaux semi-conducteurs dopés possédant une réponse plasmonique ajustable dans la plage de longueurs d’onde comprise entre 800 et 4 000 nm. Trois architectures différentes seront testées afin de produire un dispositif de cellules solaires à haut rendement. À terme, le projet envisage de mettre au point des cellules solaires tandem qui combinent les rendements de conversion énergétique habituels d’une cellule solaire commerciale en silicium avec le nouveau dispositif qu’il a prévu de créer, en ciblant un rendement total de conversion de l’énergie solaire de 30 %.
Objectif
Earth is inhabited by an energy hungry human society. The Sun, with a global radiation at the ground level of more than 1 kW/m^2, is our largest source of energy. However, 45% of the total radiation is in the near infrared (NIR) and is not absorbed by most photovoltaic materials.
PAIDEIA focuses on two main advantages aiming to enhance the capacity of solar energy conversion:
i) plasmon assisted hot carriers extraction from NIR plasmonic materials;
ii) linewidth narrowing in plasmonic nanoparticle films that enhances the lifetime of hot carriers and, thus, boosts the efficiency of light driven carrier extraction.
Instead of metals, which operate mostly in the visible region, we will make use of doped semiconductor nanocrystals (DSNCs) as hot electron extraction materials possessing a plasmonic response tunable in the range 800 nm – 4000 nm. Three different innovative architectures will be used for improved device performance: i) improved Schottky junctions (DSNC/wide band gap semiconductor nanocomposites); ii) ultrathin devices (DSNCs/2D quantum materials); iii) maximized interface DSNC/semiconductor bulk hetero-Schottky junctions.
By combining both concepts in advanced architectures we aim to produce a solar cell device that functions in the NIR with efficiencies of up to 10%. A tandem solar cell that combines the conventional power conversion efficiency, up to ~1100 nm, of a commercial Si solar cell (~20%) with the new PAIDEIA based device is expected to reach a total power conversion efficiency of 30% by extending the width of wavelengths that are converted to the full spectral range delivered by the Sun. PAIDEIA has a deeply fundamental character impacting several areas in the field of nanophysics, nanochemistry and materials processing and, at the same time, having a high impact on the study of solar energy conversion. Finally, PAIDEIA will provide answers to the fundamental questions regarding the physical behaviour of plasmonic/semiconductor interfaces.
Champ scientifique
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologynanotechnologynano-materialsnanocrystals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Mots‑clés
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
10129 Torino
Italie