Projektbeschreibung
Wie Infrarotlicht effizienter in Energie umgewandelt wird
Fast die Hälfte der Sonnenenergie, welche die Erdoberfläche erreicht, entfällt auf das Infrarotlicht. Jedoch passieren die Infrarotstrahlen der Sonne normalerweise direkt die photovoltaischen Materialien, aus denen Solarzellen bestehen. Das EU-finanzierte Projekt PAIDEIA verfolgt nun das Ziel, die Umwandlung der Sonnenenergie des Infrarotanteils des Spektrums zu verbessern. Zu diesem Zweck werden dotierte Halbleiternanokristalle eingesetzt, die eine abstimmbare plasmonische Reaktion im Bereich von 800 bis 4 000 nm aufweisen. Es werden drei verschiedene Architekturen getestet, um ein hocheffizientes Solarzellenbauelement herzustellen. Letzten Endes plant das Projekt die Entwicklung einer Tandem-Solarzelle, in der die regulären Wirkungsgrade einer kommerziellen Siliziumsolarzelle mit dem neu zu entwickelnden Bauelement kombiniert werden. Ziel ist ein Gesamtwirkungsgrad der Solarenergieumwandlung in Höhe von 30 %.
Ziel
Earth is inhabited by an energy hungry human society. The Sun, with a global radiation at the ground level of more than 1 kW/m^2, is our largest source of energy. However, 45% of the total radiation is in the near infrared (NIR) and is not absorbed by most photovoltaic materials.
PAIDEIA focuses on two main advantages aiming to enhance the capacity of solar energy conversion:
i) plasmon assisted hot carriers extraction from NIR plasmonic materials;
ii) linewidth narrowing in plasmonic nanoparticle films that enhances the lifetime of hot carriers and, thus, boosts the efficiency of light driven carrier extraction.
Instead of metals, which operate mostly in the visible region, we will make use of doped semiconductor nanocrystals (DSNCs) as hot electron extraction materials possessing a plasmonic response tunable in the range 800 nm – 4000 nm. Three different innovative architectures will be used for improved device performance: i) improved Schottky junctions (DSNC/wide band gap semiconductor nanocomposites); ii) ultrathin devices (DSNCs/2D quantum materials); iii) maximized interface DSNC/semiconductor bulk hetero-Schottky junctions.
By combining both concepts in advanced architectures we aim to produce a solar cell device that functions in the NIR with efficiencies of up to 10%. A tandem solar cell that combines the conventional power conversion efficiency, up to ~1100 nm, of a commercial Si solar cell (~20%) with the new PAIDEIA based device is expected to reach a total power conversion efficiency of 30% by extending the width of wavelengths that are converted to the full spectral range delivered by the Sun. PAIDEIA has a deeply fundamental character impacting several areas in the field of nanophysics, nanochemistry and materials processing and, at the same time, having a high impact on the study of solar energy conversion. Finally, PAIDEIA will provide answers to the fundamental questions regarding the physical behaviour of plasmonic/semiconductor interfaces.
Wissenschaftliches Gebiet
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologynanotechnologynano-materialsnanocrystals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-COG - Consolidator GrantGastgebende Einrichtung
10129 Torino
Italien