Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Pushing Quantum Chemistry by Advancing Photoswitchable Catalysis

Description du projet

La catalyse grâce à un simple interrupteur

Le projet PushQChem, financé par l’UE, étudiera les nanocommutateurs moléculaires, qui peuvent être activés et désactivés de manière réversible dans le but de contrôler une réaction chimique. Ces matériaux répondent à des stimuli externes par un changement de conformation ou de configuration, offrant ainsi un moyen de créer des machines moléculaires artificielles capables de contrôler des réactions complexes en cascade à l’aide d’un interrupteur chimique. En s’appuyant sur des approches de pointe en chimie computationnelle (par exemple, des techniques d’apprentissage automatique) et sur des méthodes expérimentales permettant de cartographier leurs propriétés complexes, le projet offrira un meilleur aperçu de la morphologie et la chimie sophistiquées de ces catalyseurs intelligents, repoussant ainsi les frontières de la chimie quantique moderne.

Objectif

This project exploits the synergy between the trending area of artificial molecular machines and cutting edge computational chemistry approaches. Specific emphasis is placed on photoswitchable catalysts, which respond to external stimuli with a conformational or configurational change. These controllable motions allow catalytic function to be turned ON/OFF in a switch type fashion by opening/hindering access of a substrate to a catalytic site. On one hand, the rich morphology and chemistry of these smart catalysts calls for computational insights and design principles that complement experiment and push the field forward. On the other hand, the inherent complexity of these highly fluxional molecules makes them perfect subjects for driving modern quantum chemistry out of its comfort zone. To benefit from this synergy, the latest innovations in quantum chemistry-based machine learning techniques will be combined with methods capable of thoroughly mapping the intricate chemistry of molecular actuators. Overall, we aim to bridge the gap between the current state-of-the-art, which has reached reasonable quantum chemical accuracy for rigid medium size organic molecules, and more challenging fluxional architectures. The proposed methodological toolbox will be applied to the field of smart catalysis where general strategies for improving the efficiencies and enhancing enantioselectivity will be formulated. Thus, this project involves exploiting a wide range of modern computational approaches to chemical tasks that are broadly relevant to flexible/switchable catalytic systems. The anticipated output will furnish the computational chemistry community with a comprehensive array of novel next-generation approaches with applicability beyond the field of molecular machines.

Mots‑clés

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution nette de l'UE
€ 1 949 385,00
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 949 385,00

Bénéficiaires (1)