Descripción del proyecto
Inferencia robusta para paneles y redes de conjuntos de datos
La disponibilidad de datos avanzados en la economía permite acceder a conjuntos de datos más ricos y con una complejidad mayor. Sin embargo, la estructura de red fundamental suele ser escasa, lo que solo nos permite observar un pequeño subconjunto de todas las perspectivas posibles. A su vez, la combinación de la austeridad y un gran número de parámetros suponen problemas econométricos complejos. El proyecto PANEDA, financiado con fondos europeos, desarrollará métodos de inferencia robusta para los paneles y redes dispersos de conjuntos de datos. El proyecto establecerá una representación matemática de la red que permite la formalización de resultados de inferencia asintóticos para las secuencias de red cada vez mayores. En consecuencia, PANEDA desarrollará una nueva corrección del sesgo y robustos métodos de evaluación de errores estándar, además de avanzar modelizaciones más cercanas y métodos de evaluaciones para datos no informativos entre parámetros de interés.
Objetivo
Improved data availability in Economics provides access to richer datasets with increased complexity. There is regularly a network aspect to the data, whenever outcomes are observed for matches of different economic units (e.g. households, individuals, firms, products, markets). Such observations include, e.g. wages for workers in firms, academic achievement for students taught by teachers in schools, and purchasing decisions for consumers in stores. The underlying network structure is often sparse, because we only observe a small subset of all possible matches, say between workers and firms. In addition, we aim to estimate models with many parameters, for example to control for and to estimate unobserved heterogeneity of economic units by including (e.g. worker and firm specific) fixed effects.
The combination of sparsity of the underlying network structure and a large number of parameters in the model creates challenging Econometric problems. In particular, there is a serious gap between empirical practice, where applied researchers regularly use such sparse network datasets, and the theoretical justifications for those inference methods that are based on classic data structures (cross-sectional, time-series, and panel data) that do not account for the sparsity aspect of the data.
The goal of this research project is to develop robust inference methods for such sparse panel and network datasets. This requires to establish a mathematical representation of the network that allows to formalize asymptotic inference results for sequences of growing networks. Subsequently, new bias correction and robust standard error estimation methods will be developed that account for the sparsity structure of the data. I will also advance more parsimonious modeling and estimation approaches (e.g. grouped heterogeneity or empirical Bayes) for situations where the data are otherwise uninformative for the parameters of interest.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
OX1 2JD Oxford
Reino Unido