Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Revealing the adaptive internal organization and dynamics of bacteria and mitochondria

Description du projet

Microscopie à super-résolution pour étudier les propriétés subcellulaires des cellules bactériennes et des mitochondries

Les cellules eucaryotes ont une taille de plusieurs dizaines de microns et contiennent des organites, dont des mitochondries, qui proviennent d’anciens endosymbiotes bactériens. Le but du projet Piko, financé par l’UE, est d’élucider l’organisation et la dynamique du cytoplasme bactérien et de la matrice mitochondriale. Un obstacle connu dans l’étude de l’intérieur des bactéries et des mitochondries est celui des échelles de longueur pertinentes, qui sont inférieures à la limite de diffraction. Les chercheurs cherchent à surmonter ces défis techniques en utilisant la microscopie de fluorescence à super-résolution et à haut débit. Les nouveaux microscopes peuvent capturer lors de chaque expérience des milliers de cellules à une super-résolution, ce qui permet un suivi moléculaire structurel et à long terme dynamique. À terme, cela permettra l’étude quantitative des propriétés subcellulaires de cellules bactériennes et mitochondries individuelles.

Objectif

Bacteria cells appear to be less complex than our own cells -- yet they are better able to survive harsh conditions. Typically ~1 micron in size, they lack motor proteins; thus, they rely on fluctuations for intracellular transport. Bacteria in the environment often face starvation and exist in a non-proliferating quiescent state, which promotes antibiotic resistance and virulence. Entering quiescence, the bacterial cytoplasm displays signatures of the colloidal glass transition, with increasingly slow and heterogeneous diffusion. Also important for fitness during starvation is the formation of storage granules up to hundreds of nanometers in size. The complex state behavior of the bacterial cytoplasm is therefore important for their survival, but the physical nature of each of these processes is poorly understood. Our own cells are typically tens of microns in size and contain organelles including mitochondria, which originated from ancient bacterial endosymbionts. But little is known about the transport properties of the mitochondrial matrix, or how it responds to changes in mitochondrial membrane potential or energy production.
The goal of this project is to elucidate the organization and dynamics of the bacterial cytoplasm and the mitochondrial matrix. A major obstacle to studying the interior of bacteria and mitochondria is the relevant length scales, which lie below the diffraction limit. Furthermore, to observe and quantify their adaptive response, many cells must be measured. Our strategy to overcome both of these technical challenges is to use high-throughput super-resolution fluorescence microscopy. We have developed new microscopes, capable of capturing thousands of super-resolved cells in each experiment. We propose to translate these developments to dynamic structured illumination and long-term molecular tracking. Broadly applicable, this will also enable the quantitative study of the subcellular properties of single bacteria cells or mitochondria.

Mots‑clés

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution nette de l'UE
€ 2 366 835,00
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 366 835,00

Bénéficiaires (1)