Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Revealing the adaptive internal organization and dynamics of bacteria and mitochondria

Descripción del proyecto

Microscopía de superresolución para estudiar las propiedades subcelulares de las células bacterianas y las mitocondrias

Las células eucariotas tienen un tamaño de decenas de micrómetros y contienen orgánulos como las mitocondrias, las cuales se originaron a partir de endosimbiontes bacterianos antiguos. El proyecto financiado con fondos europeos Piko tiene por objeto dilucidar la organización y la dinámica del citoplasma bacteriano y la matriz mitocondrial. Un obstáculo conocido para el estudio del interior de las bacterias y las mitocondrias son las escalas de longitud pertinente, las cuales se encuentran por debajo del límite de difracción. Los investigadores buscan superar estos retos técnicos mediante el uso de la microscopía de fluorescencia de superresolución y alto rendimiento. Los nuevos microscopios pueden capturar miles de células en cada experimento a superresolución, lo que permite realizar un seguimiento estructural dinámico y molecular a largo plazo. En última instancia, esto permitirá estudiar cuantitativamente las propiedades subcelulares de las mitocondrias y las células bacterianas independientes.

Objetivo

Bacteria cells appear to be less complex than our own cells -- yet they are better able to survive harsh conditions. Typically ~1 micron in size, they lack motor proteins; thus, they rely on fluctuations for intracellular transport. Bacteria in the environment often face starvation and exist in a non-proliferating quiescent state, which promotes antibiotic resistance and virulence. Entering quiescence, the bacterial cytoplasm displays signatures of the colloidal glass transition, with increasingly slow and heterogeneous diffusion. Also important for fitness during starvation is the formation of storage granules up to hundreds of nanometers in size. The complex state behavior of the bacterial cytoplasm is therefore important for their survival, but the physical nature of each of these processes is poorly understood. Our own cells are typically tens of microns in size and contain organelles including mitochondria, which originated from ancient bacterial endosymbionts. But little is known about the transport properties of the mitochondrial matrix, or how it responds to changes in mitochondrial membrane potential or energy production.
The goal of this project is to elucidate the organization and dynamics of the bacterial cytoplasm and the mitochondrial matrix. A major obstacle to studying the interior of bacteria and mitochondria is the relevant length scales, which lie below the diffraction limit. Furthermore, to observe and quantify their adaptive response, many cells must be measured. Our strategy to overcome both of these technical challenges is to use high-throughput super-resolution fluorescence microscopy. We have developed new microscopes, capable of capturing thousands of super-resolved cells in each experiment. We propose to translate these developments to dynamic structured illumination and long-term molecular tracking. Broadly applicable, this will also enable the quantitative study of the subcellular properties of single bacteria cells or mitochondria.

Palabras clave

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Aportación neta de la UEn
€ 2 366 835,00
Dirección
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 366 835,00

Beneficiarios (1)