Descrizione del progetto
Una microscopia a super risoluzione per lo studio delle proprietà subcellulari di cellule batteriche e mitocondri
Le cellule eucariotiche sono grandi decine di micron e contengono organuli, tra cui i mitocondri, che si sono originati da antichi endosimbionti batterici. L’obiettivo del progetto Piko, finanziato dall’UE, consiste nel chiarire l’organizzazione e le dinamiche del citoplasma batterico e della matrice mitocondriale. Un noto ostacolo nello studio dell’interno di batteri e mitocondri è rappresentato dalle scale di lunghezza pertinenti, inferiori al limite di diffrazione. I ricercatori si propongono di superare queste sfide tecniche impiegando una microscopia a fluorescenza dotata di super risoluzione e ad alte prestazioni. I nuovi microscopi possono catturare migliaia di cellule in ogni esperimento con una super risoluzione, consentendo un tracciamento molecolare dinamico strutturale e di lungo termine. Infine, ciò consentirà lo studio quantitativo delle proprietà subcellulari di cellule batteriche e mitocondri singoli.
Obiettivo
Bacteria cells appear to be less complex than our own cells -- yet they are better able to survive harsh conditions. Typically ~1 micron in size, they lack motor proteins; thus, they rely on fluctuations for intracellular transport. Bacteria in the environment often face starvation and exist in a non-proliferating quiescent state, which promotes antibiotic resistance and virulence. Entering quiescence, the bacterial cytoplasm displays signatures of the colloidal glass transition, with increasingly slow and heterogeneous diffusion. Also important for fitness during starvation is the formation of storage granules up to hundreds of nanometers in size. The complex state behavior of the bacterial cytoplasm is therefore important for their survival, but the physical nature of each of these processes is poorly understood. Our own cells are typically tens of microns in size and contain organelles including mitochondria, which originated from ancient bacterial endosymbionts. But little is known about the transport properties of the mitochondrial matrix, or how it responds to changes in mitochondrial membrane potential or energy production.
The goal of this project is to elucidate the organization and dynamics of the bacterial cytoplasm and the mitochondrial matrix. A major obstacle to studying the interior of bacteria and mitochondria is the relevant length scales, which lie below the diffraction limit. Furthermore, to observe and quantify their adaptive response, many cells must be measured. Our strategy to overcome both of these technical challenges is to use high-throughput super-resolution fluorescence microscopy. We have developed new microscopes, capable of capturing thousands of super-resolved cells in each experiment. We propose to translate these developments to dynamic structured illumination and long-term molecular tracking. Broadly applicable, this will also enable the quantitative study of the subcellular properties of single bacteria cells or mitochondria.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencesbiological sciencesmicrobiologybacteriology
- natural sciencesphysical sciencesopticsmicroscopysuper resolution microscopy
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- engineering and technologymaterials engineering
- medical and health sciencesbasic medicinepharmacology and pharmacydrug resistanceantibiotic resistance
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
1015 Lausanne
Svizzera