Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Revealing the adaptive internal organization and dynamics of bacteria and mitochondria

Projektbeschreibung

Hochauflösende Mikroskopie zur Untersuchung subzellulärer Eigenschaften von Bakterienzellen und Mitochondrien

Eukaryotische Zellen sind einige Dutzend Mikrometer groß und enthalten Zellorganellen wie Mitochondrien, die aus früheren bakteriellen Endosymbionten entstanden sind. Das Ziel des EU-finanzierten Projekts Piko ist es, Erkenntnisse zur Organisation und Dynamik des bakteriellen Zytoplasmas und der mitochondrialen Matrix zu gewinnen. Ein Hindernis bei der Untersuchung des Inneren von Bakterien und Mitochondrien ist bekanntermaßen der relevante Längenmaßstab, der unterhalb der Beugungsgrenze liegt. Die Forschungsgruppe möchte diese technischen Herausforderungen mithilfe der hochauflösenden Hochdurchsatz-Fluoreszenzmikroskopie überwinden. Die neuen Mikroskope sind in der Lage, in jedem Experiment Tausende von Zellen mit hoher Auflösung zu erfassen, was die dynamische strukturelle Langzeitverfolgung von Molekülen ermöglicht. Letztlich können so quantitative Untersuchungen der subzellulären Eigenschaften von Bakterienzellen und Mitochondrien durchgeführt werden.

Ziel

Bacteria cells appear to be less complex than our own cells -- yet they are better able to survive harsh conditions. Typically ~1 micron in size, they lack motor proteins; thus, they rely on fluctuations for intracellular transport. Bacteria in the environment often face starvation and exist in a non-proliferating quiescent state, which promotes antibiotic resistance and virulence. Entering quiescence, the bacterial cytoplasm displays signatures of the colloidal glass transition, with increasingly slow and heterogeneous diffusion. Also important for fitness during starvation is the formation of storage granules up to hundreds of nanometers in size. The complex state behavior of the bacterial cytoplasm is therefore important for their survival, but the physical nature of each of these processes is poorly understood. Our own cells are typically tens of microns in size and contain organelles including mitochondria, which originated from ancient bacterial endosymbionts. But little is known about the transport properties of the mitochondrial matrix, or how it responds to changes in mitochondrial membrane potential or energy production.
The goal of this project is to elucidate the organization and dynamics of the bacterial cytoplasm and the mitochondrial matrix. A major obstacle to studying the interior of bacteria and mitochondria is the relevant length scales, which lie below the diffraction limit. Furthermore, to observe and quantify their adaptive response, many cells must be measured. Our strategy to overcome both of these technical challenges is to use high-throughput super-resolution fluorescence microscopy. We have developed new microscopes, capable of capturing thousands of super-resolved cells in each experiment. We propose to translate these developments to dynamic structured illumination and long-term molecular tracking. Broadly applicable, this will also enable the quantitative study of the subcellular properties of single bacteria cells or mitochondria.

Schlüsselbegriffe

Gastgebende Einrichtung

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Netto-EU-Beitrag
€ 2 366 835,00
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 366 835,00

Begünstigte (1)