Descrizione del progetto
Oscillazioni di nanofili ci aiutano a individuare le interazioni a singola particella
Le oscillazioni meccaniche sono fluttuazioni periodiche nella posizione di un oggetto attorno al suo centro di equilibrio, il cui classico esempio è rappresentato da una massa su una molla. Le caratteristiche delle oscillazioni, assieme alle proprietà conosciute dello stesso oscillatore, ci consentono di distinguere informazioni relative alla forza responsabile delle oscillazioni. Gli oscillatori meccanici su nanoscala hanno trovato applicazioni importanti come sensori. Un recente lavoro ha condotto a una sensibilità senza precedenti a temperatura ambiente e alla possibilità di individuare interazioni elettrone-elettrone attraverso nanofili semiconduttori e una lettura ottica. Grazie ai finanziamenti dell’UE per il progetto Atto-Zepto, gli scienziati a capo di questa impresa li stanno applicando a numerosi fenomeni. In seguito li inseriranno in una microcavità ottica per abilitare il rilevamento a singolo fotone, nonché l’esplorazione degli effetti quantistici luce-materia.
Obiettivo
By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Campo scientifico
- natural sciencesphysical sciencesopticscavity optomechanics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesmathematicspure mathematicsgeometry
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
75794 Paris
Francia