Descripción del proyecto
Un láser de femtosegundos crea orificios diminutos en estructuras de ala y mejora el rendimiento de las aeronaves
Los avances recientes en láseres de femtosegundos los han convertido en una herramienta valiosa para aplicaciones de micromecanizado y microperforación. El proyecto MULTIPOINT, financiado con fondos europeos, prevé desarrollar un láser de femtosegundos que se pueda utilizar para perforar orificios diminutos en grandes placas de titanio, lo cual ayuda a estabilizar la corriente de aire y reduce la resistencia aerodinámica de las aeronaves. A diferencia de otras tecnologías láser empleadas para perforar superficies de titanio, el láser de femtosegundos de MULTIPOINT eliminará la necesidad de efectuar un procesamiento posterior de la superficie. La tecnología no crea rebabas ni fases microestructurales de titanio indeseables en la zona afectada por el calor alrededor de los microorificios. El objetivo final es desarrollar una fuente láser de femtosegundos que proporcione 1,2 kW de potencia, así como nuevas tecnologías de emisión de haces que optimicen los parámetros del proceso y maximicen la producción.
Objetivo
MULTIPOINT's main objective is to develop a high power femtosecond laser system with a multibeam generation unit and custom beam delivery scanning and processing on the fly heads for high throughput micro-drilling of large Ti panels used in the fabrication HLFC structures in the aerospace industry. Three will be the key challenges to be adressed:
• A 1.2 kW femtosecond laser source working at high pulse energy will be developed. This laser has enough power to drive several synchronized processes of percussion drilling at the same time (parallel processing) and hence, maximize the production just taking into account aspects related to the increase of the energy provided to the sample.
• Secondly, a multibeam generation unit will be developed for splitting the main beam supplied by the laser source. This unit will be optimized not only optically but will take into account process optimization and application requirements. It will be designed to optimize the energy balance per beam in a pattern determined by the particular requirements of the micro-drilling of Ti panels for the development of HLFC structures.
• Finally, two strategies for delivering the multibeam pattern to the Ti panel based on the percussion drilling technique will be developed and tested. The first strategy involves the development of a multibeam scanner based on galvanometric mirrors. Its custom design will include a sufficient optical aperture to take a number of parallel beams to the sample, within a working field determined by a focussing f-theta lens, in a controlled environment by means of an inert Ar atmosphere chamber for process protection. The second head will be a multibeam on-the-fly processing head with pulse trains in a multibeam pattern and Ar jet nozzle. These two strategies will also allow us to study the best processing approach through the development of new beam delivery technologies to optimize the process parameters and maximize production.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-ICT-2018-2
Régimen de financiación
RIA - Research and Innovation actionCoordinador
20600 Eibar Guipuzcoa
España