Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Delivery and On-Demand Activation of Chemically Synthesized and Uniquely Modified Proteins in Living Cells

Project description

Synthesis of proteins with on-demand activation for real-time in-cell studies

To monitor proteins and their cellular functions in real time, the protein synthesis and in situ protein manipulation has to be accompanied by advanced methods for protein delivery and real-time activation. The EU-funded SynProAtCell project will develop proteins with traceless cell delivery units, an on-demand function activation unit, and a fluorescence probe for monitoring. The goal is to use this approach to elucidate the processes of ubiquitination and deubiquitination, the critical regulators for many biological processes. The project will study the effect of inhibition of deubiquitinases in cancer, the effect of phosphorylation on proteasomal degradation and ubiquitin chain elongation, and the effect of covalent attachment of a ligase ligand to a protein on its degradation.

Objective

While advanced molecular biology approaches provide insight on the role of proteins in cellular processes, their ability to freely modify proteins and control their functions when desired is limited, hindering the achievement of a detailed understanding of the cellular functions of numerous proteins. At the same time, chemical synthesis of proteins allows for unlimited protein design, enabling the preparation of unique protein analogues that are otherwise difficult or impossible to obtain. However, effective methods to introduce these designed proteins into cells are for the most part limited to simple systems. To monitor proteins cellular functions and fates in real time, and in order to answer currently unanswerable fundamental questions about the cellular roles of proteins, the fields of protein synthesis and cellular protein manipulation must be bridged by significant advances in methods for protein delivery and real-time activation. Here, we propose to develop a general approach for enabling considerably more detailed in-cell study of uniquely modified proteins by preparing proteins having the following features: 1) traceless cell delivery unit(s), 2) an activation unit for on-demand activation of protein function in the cell, and 3) a fluorescence probe for monitoring the state and the fate of the protein.

We will adopt this approach to shed light on the processes of ubiquitination and deubiquitination, which are critical cellular signals for many biological processes. We will employ our approach to study 1) the effect of inhibition of deubiquitinases in cancer. 2) Examining effect of phosphorylation on proteasomal degradation and on ubiquitin chain elongation. 3) Examining effect of covalent attachment of a known ligase ligand to a target protein on its degradation Moreover, which could trigger the development of new methods to modify the desired protein in cell by selective chemistries and so rationally promote their degradation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0