Description du projet
Solutions minimales pour la résolution d’équations aux dérivées partielles non linéaires
Financé par le programme Actions Marie Skłodowska-Curie, le projet MinSol-PDEs mènera une étude systématique des solutions minimales pour une grande classe d’équations aux dérivées partielles non linéaires. Une partie de la recherche sera orientée vers les problèmes de transition de phase décrits par l’équation d’Allen‑Cahn. L’idée principale est de réduire l’équation à un système hamiltonien afin de construire de nouvelles classes de solutions minimales et de comprendre les conditions impliquant la réduction des variables. Une autre partie de la recherche portera sur l’équation de Painlevé, qui joue un rôle crucial dans des domaines aussi divers que les matrices aléatoires, les systèmes intégrables et la supraconductivité. L’objectif principal est de classer et d’étudier les solutions minimales des systèmes de type Painlevé en basse dimension.
Objectif
The aim of this proposal is to provide a systematic study of minimal solutions for a large class of nonlinear systems of PDE. Namely we will construct minimal solutions with predefined characteristics and investigate their qualitative properties, addressing the fundamental challenges that appear in the case of systems and which cannot be tackled with tools from the scalar case.
The first part focuses on phase transition problems described by the Allen-Cahn system. This is a hot and difficult topic linking PDE with the theory of minimal surfaces. The main idea is to reduce the Allen-Cahn system to a Hamiltonian system in order to construct new classes of minimal solutions, and understand the conditions implying the reduction of variables (vector analog of the celebrated De Giorgi conjecture).
In the second part, our focus is on the Painlevé equation which plays a crucial role in areas as diverse as random matrices, integrable systems, and superconductivity. The objective is to classify and investigate the minimal solutions of Painlevé-type systems in low dimensions. These have direct applications in the study of vortices in liquid crystals and Bose-Einstein condensates. The proposed approach connects the Painlevé equation with a singular problem, easier to study.
The fellow has a strong research record on the Allen-Cahn system (a book + 6 papers), and has also worked on the Ginzburg-Landau model of liquid crystals. On the one hand, he will develop his own innovative approaches to the proposed problems, and transfer his expertise to the host. On the other hand, at BCAM and through a secondment, he will link his previous research on liquid crystals to other alternative models (for which the supervisor is a world-leading expert), and to the theory of Bose-Einstein condensates. He will also acquire new skills in simulation and computation. The achievement of this project will reinforce Fellow's reputation and support him in obtaining a strong academic position.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
- sciences naturelles sciences physiques physique de la matière condensée condensat de bose-einstein
- sciences naturelles sciences physiques électromagnétisme et électronique superconducteur
- ingénierie et technologie ingénierie des materiaux cristal liquide
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF-EF-ST - Standard EF
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
48009 BILBAO
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.