Descrizione del progetto
Soluzioni minimali per risolvere le equazioni differenziali parziali non lineari
Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto MinSol-PDEs condurrà uno studio sistematico di soluzioni minimali per un’ampia classe di equazioni differenziali parziali non lineari. Parte della ricerca sarà orientata verso i problemi di transizione di fase descritti dall’equazione di Allen-Cahn. L’idea principale consiste nel ridurre l’equazione a un sistema hamiltoniano per costruire nuove classi di soluzioni minimali e comprendere le condizioni che implicano una riduzione variabile. Un’altra parte della ricerca si concentrerà sull’equazione di Painlevé, che svolge un ruolo cruciale in vari ambiti, quali matrici casuali, sistemi integrali e superconduttvità. L’obiettivo principale consiste nel classificare e indagare le soluzioni minimali per i sistemi di tipo Painlevé in dimensioni basse.
Obiettivo
The aim of this proposal is to provide a systematic study of minimal solutions for a large class of nonlinear systems of PDE. Namely we will construct minimal solutions with predefined characteristics and investigate their qualitative properties, addressing the fundamental challenges that appear in the case of systems and which cannot be tackled with tools from the scalar case.
The first part focuses on phase transition problems described by the Allen-Cahn system. This is a hot and difficult topic linking PDE with the theory of minimal surfaces. The main idea is to reduce the Allen-Cahn system to a Hamiltonian system in order to construct new classes of minimal solutions, and understand the conditions implying the reduction of variables (vector analog of the celebrated De Giorgi conjecture).
In the second part, our focus is on the Painlevé equation which plays a crucial role in areas as diverse as random matrices, integrable systems, and superconductivity. The objective is to classify and investigate the minimal solutions of Painlevé-type systems in low dimensions. These have direct applications in the study of vortices in liquid crystals and Bose-Einstein condensates. The proposed approach connects the Painlevé equation with a singular problem, easier to study.
The fellow has a strong research record on the Allen-Cahn system (a book + 6 papers), and has also worked on the Ginzburg-Landau model of liquid crystals. On the one hand, he will develop his own innovative approaches to the proposed problems, and transfer his expertise to the host. On the other hand, at BCAM and through a secondment, he will link his previous research on liquid crystals to other alternative models (for which the supervisor is a world-leading expert), and to the theory of Bose-Einstein condensates. He will also acquire new skills in simulation and computation. The achievement of this project will reinforce Fellow's reputation and support him in obtaining a strong academic position.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- scienze naturalimatematicamatematica puraanalisi matematicaequazioni differenzialiequazioni differenziali parziali
- scienze naturaliscienze fisichefisica della materia condensatacondensati di bose-einstein
- scienze naturaliscienze fisicheelettromagnetismo ed elettronicasuperconduttività
- ingegneria e tecnologiaingegneria dei materialicristalli liquidi
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) H2020-MSCA-IF-2018
Vedi altri progetti per questo bandoMeccanismo di finanziamento
MSCA-IF-EF-ST -Coordinatore
48009 Bilbao
Spagna