Descripción del proyecto
Tejidos sintéticos impresos en tres dimensiones y controlados de forma remota para modular las funciones celulares
Diferentes tipos de células trabajan juntos para formar tejidos con funciones específicas en el cuerpo. Cuando esos tejidos sufren daños a causa de lesiones, enfermedades u otros factores, pueden perderse funciones esenciales para el cuerpo. Los tejidos sintéticos elaborados en laboratorio y listos para funcionar presentarían ventajas sobre los implantes celulares, que deben inducirse para formar redes operativas una vez están implantados. El proyecto SYNTISU, financiado con fondos europeos, está aprovechando su técnica para crear tejidos sintéticos mediante redes de gotas del rango de los picolitros impresas en tres dimensiones. El siguiente paso es habilitar su control mediante la luz, el calor y campos magnéticos para modificar su forma y manipular sus funciones metabólicas, incluida la producción de trifosfato de adenosina y la expresión de proteínas.
Objetivo
We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. La clasificación de este proyecto ha sido validada por su equipo.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. La clasificación de este proyecto ha sido validada por su equipo.
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
OX1 2JD Oxford
Reino Unido