Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Remotely-controlled functional synthetic tissues

Projektbeschreibung

Wie ferngesteuerte 3D-gedruckte synthetische Gewebe Zellfunktionen modulieren

Verschiedene Zelltypen arbeiten zusammen, um im Körper Gewebe mit ganz speziellen Aufgaben zu bilden. Werden Gewebe aufgrund von Traumata, Krankheiten und weiteren Faktoren beschädigt, können wichtige Körperfunktionen verlorengehen. Im Labor auf das Funktionieren im Körper vorbereitete synthetische Gewebe hätten Vorteile gegenüber Zellimplantaten, die erst vor Ort zur Bildung funktionierender Netzwerke angeregt werden müssen. Das EU-finanzierte Projekt SYNTISU arbeitet weiter an seinem Verfahren zur Erzeugung synthetischer Gewebe aus 3D-gedruckten Netzwerken aus Tropfen in Pikolitergröße. Der nächste Schritt besteht darin, Steuerungsprozesse durch Licht, Wärme und Magnetfelder zu realisieren, um ihre Formen zu verändern und Stoffwechselfunktionen einschließlich ATP-Erzeugung und Proteinexpression zu manipulieren.

Ziel

We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.

Finanzierungsplan

ERC-ADG - Advanced Grant

Gastgebende Einrichtung

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Netto-EU-Beitrag
€ 2 428 065,00
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Vereinigtes Königreich

Auf der Karte ansehen

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 428 065,00

Begünstigte (1)