Projektbeschreibung
Hocheffiziente optoelektronische Bauelemente auf Basis von Perowskiten
Das EU-finanzierte Projekt HELD plant die Entwicklung stabiler, stark lumineszierender Heterostrukturen auf Basis fehlertoleranter Perowskite und deren Integration in optoelektronische Dünnschicht-Bauelemente. Die primären Zielbauelemente sind blaue und weiße planare elektroluminizierende Vorrichtungen, hocheffiziente Solarzellen und elektrisch gepumpte Laser. Das Projekt wird Verarbeitungsmethoden anwenden, die mit großflächigen industriellen Prozessen kompatibel sind. Die Menge an Blei in der Perowskitstruktur soll dabei durch die Verwendung weniger giftiger Materialien wie Zinn und Gemischen mit Silber und Wismut reduziert werden. Darüber hinaus sollen Dampfabscheidungsverfahren die Herstellung von Perowskiten in mehrschichtigen Heterostrukturen ermöglichen. Dies wird voraussichtlich ihre thermische und strukturelle Stabilität und vor allem ihre Photolumineszenzeffizienz erhöhen.
Ziel
We propose to engineer stable-highly luminescent heterostructures based on defect tolerant benign perovskites and their integration into efficient planar/thin film optoelectronic devices. Primary targeted devices are: blue and white planar electroluminescent devices, high efficiency solar cells and electrically pumped lasers.
We will use processing methods that are compatible with large area industrial processes, in particular focusing on vapour deposition using thermal sublimation of the perovskite precursors. The boundaries of this simple, scalable and economic coating method will be determined using an advanced real time in-situ optical monitoring system based on hyperspectral imaging. This tool will unveil the limits and processing conditions for the preparation of uniform and very thin (< 10 nm) crystalline thin-film semiconductors.
We will also attempt to replace the toxic lead in today’s most studied perovskite materials, by less toxic materials such as tin and silver/bismuth mixtures. Here vacuum based processing is beneficial in view of the limited air-stability and solubility of their pre-cursor salts.
Accurate vapour deposition methods will allow the fabrication of perovskites in multiple layered heterostructures (MLH) that passivate the perovskite crystal boundaries. This will increase their thermal and structural stability and above all their photoluminescence efficiency. With the sophisticated processing control, multiple quantum wells (MQWs) will be engineered. MQWs are promising for light-emitting devices, in particular for lasers.
The impact of the project is large on various fields ranging from processes, materials and device engineering, physics, and energy. High efficiency, planar LEDs and solar cells, can shift the energy landscape and strongly help to meet the worlds CO2 reduction targets. The demonstration of electrically pumped lasing in easily processed thin film semiconductors will generate so far un-available fields of science.
Wissenschaftliches Gebiet
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencesopticslaser physics
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-ADG - Advanced GrantGastgebende Einrichtung
46010 Valencia
Spanien