Project description
Effects of night lights on circadian clocks
Circadian rhythms dictate the pattern of our days and nights. It’s the internal body clock that regulates our sleep-wake cycle over a 24-hour period. The invention of the electric lightbulb and exposure to light at night has a dark side. It can disrupt our biological clock. The EU-funded DiurnalHealth project will investigate the mechanisms that drive the suprachiasmatic nucleus (SCN) – the central timekeeper in mammals – in humans and other diurnal (day-active) species. The project will test the hypothesis that the mechanisms differ between diurnal and nocturnal species. It will identify the similarities and differences as regards their response to light, neuronal synchronisation, output and response to physical activity.
Objective
Due to a significant increase in the use of artificial light in our 24h economy, the biological clocks of all living organisms, including humans, are severely disrupted. Many severe health disorders are consequences of clock disruption such as diabetes, sleep/mood disorders, cardiovascular disease, and immune dysfunction. The central timekeeper in mammals is the suprachiasmatic nucleus (SCN), and the mechanisms by which light disrupts integrity of the SCN has been well investigated in nocturnal species. In contrast, mechanisms of clock disruption in humans and other diurnal (day-active) species remain poorly defined. I have evidence that the mechanisms that drive SCN function are fundamentally different between nocturnal species and diurnal species. This defines my aim to restore proper clock function in diurnal species, including humans. To test this, in Objective 1 we will identify similarities and differences between nocturnal and diurnal clocks with respect to their i) response to light, ii) neuronal synchronization, iii) output, and iv) response to physical activity. Based on these findings, in Objective 2 we will develop novel strategies to manipulate and restore clock function in diurnal species. These objectives will be achieved using novel, state-of-the-art chronobiology methods including in vivo electrophysiology and Ca2+ and bioluminescence reporters—all in freely behaving day-active animals, as well as in slice preparations containing the SCN. For studies on the human SCN we record with 7-Tesla fMRI. This proposal will help establish a new basis for chronobiology with respect to the most suitable models for studying translational applications. The results will yield immediate benefits in terms of manipulating biological clock function among vulnerable populations in modern society, particularly the elderly, patients in intensive care, and shift workers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2333 ZA Leiden
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.